The primality of 2 h · 3 n − 1

نویسنده

  • Øystein J. Rødseth
چکیده

We consider Williams’ primality test for rational integers of the form 2h ·3n−1. We give an algebraic proof of the test, and we resolve a sign ambiguity. We also show that the conditions of the original test can be relaxed, especially if h is divisible by a power of 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic reciprocity and explicit primality tests for h · 3 k ± 1

As a direct generalization of the Lucas-Lehmer test for the Mersenne numbers 2−1, explicit primality tests for numbers of the form N = h ·3 ±1 are derived, for fixed h, and all k with 3 > h. The result is that N is prime if and only if wk−1 ≡ ±1 mod N , where w is given by the recursion wj = wj−1(w 2 j−1 −3); the main difference with the original Lucas-Lehmer test is that the starting value w0 ...

متن کامل

Biquadratic reciprocity and a Lucasian primality test

Let {sk, k ≥ 0} be the sequence defined from a given initial value, the seed, s0, by the recurrence sk+1 = s 2 k − 2, k ≥ 0. Then, for a suitable seed s0, the number Mh,n = h · 2n − 1 (where h < 2n is odd) is prime iff sn−2 ≡ 0 mod Mh,n. In general s0 depends both on h and on n. We describe a slight modification of this test which determines primality of numbers h·2n±1 with a seed which depends...

متن کامل

Improving the Speed and Accuracy of the Miller-Rabin Primality Test

Currently, even the fastest deterministic primality tests run slowly, with the AgrawalKayal-Saxena (AKS) Primality Test runtime Õ(log(n)), and probabilistic primality tests such as the Fermat and Miller-Rabin Primality Tests are still prone to false results. In this paper, we discuss the accuracy of the Miller-Rabin Primality Test and the number of nonwitnesses for a composite odd integer n. We...

متن کامل

On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth’s Primality Theorem

We present a family of integer sequences characterizing the behavior of the quotients σ/s for a given odd natural number H, where N = H · 2 + 1 is a composite number and h · 2 + 1 (h ≥ 1 odd, s, σ ∈ N) is a non-trivial divisor of N . As an application we prove a generalization of the primality theorem of Proth.

متن کامل

A Lucas Triangle Primality Criterion Dual to That of Mann-shanks

subject to the initial conditions A(l, 0) = 1, A(l, 1) ='2, with 4(n, /c) = 0 for & < 0 or k > n. This array has been called a Lucas triangle by Feinberg [1], because rising diagonals sum to give the Lucas numbers 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ..., in contrast to the rising diagonals in the standard Pascal triangle where rising diagonals sum to give the Fibonacci numbers 1, 1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006